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External noise synchronizes forced oscillators
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Periodic pulsatile perturbation of nonlinear oscillators generates phase-locking, quasiperiodic, and chaotic
responses. This work shows that the application of external noise to ensembles of such forced systems can
synchronize oscillations, even in regimes where neither the noise nor the periodic forcing, when applied alone,
would lead to such a phenomenon.
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Periodic stimulation can entrain nonlinear systems such as a=2ar, )
neurons and heart cells into phase locked, quasiperiodic, and
chaotic discharge patteri4]. In systems such as sensory wherek is a positive constant. The unit cirdlee.,r=1) is a
neurons, these patterns are altered by n@sg. Such per- stable limit cycle of Eqs(1) and(2) that attracts trajectories
turbations can have opposite effects on input-output phasef all initial points except the origin. Pulses of amplitude
synchronization depending on signal and system characterisesult in a horizontal translation from a poiXtin the plane
tics. For instance, noise induced phase skips can reduae X’'=X+(A,0).
phase synchronization between the driving periodic input We assume that>0, so that, essentially, the dynamics
and an oscillator’s respondd], or on the contrary, noise take place on the unit circle. In this way, a pulsatile pertur-
induced stochastic phase locking can regularize the respongation produces a phase shift framto 8= f(«), wheref is
when the entry signal alone is too weak to entrain an excitthe phase transition function:
able systenj5].

In systems where information processing and transmis: A+coga) .
; . : SR : g(a)=arcco if sina=0
sion relies on arrays of units operating in parallel, beside 2
. . . : VAZ+2A coga)+1
phase synchrony to input, another issue of importance is that
of synchronization between the components of the ensemble A+cog a)
[6]. The present work addresses this topic. We show thatthe =2;—arcco if sin a<O0.
addition of external noise to a periodic stimulation affecting VAZ+2A coga)+1

all units within the ensemble can synchronize the units with 3)
one another. Such interunit synchronization takes place even
without phase synchrony to the input. Figure 1 illustrates this
phenomenon in an ensemble of periodically forced
FitzHugh-Nagumo modelFHN) [7] without (upper panels
and with noisglower panels The former evokes a chaotic
firing with sensitive dependence on initial conditions being
responsible for driving the units out of synchrof8j. This -0.45
situation is drastically changed when the same external noise
is applied to all units. After a transient time, the units dis-
charge synchronously, despite the fact that the firing remains
irregular. This stabilizing effect of noise is also confirmed
through the computation of the leading Lyapunov exponent
of the system, which is positive in the absence of noise, and
progressively becomes negative when the noise intensity is
increasednot shown. o . . ) .
In the following, we first present an analysis of this phe- FIG. 1. Left panels: timdin arbitrary units against superim-
nomenon in an oscillator, namely, the radial isochronic clock?°Seéd membrane potentials arbitrary units of ten FHN units.
(RIC), also referred to as Poinéanecillator, which is one of Right panels: each line represent_s the discharge times of pne of the
the canonical models of oscillating biological systefege €1 Units (raster plo}, without noise(upper panels and with a

references iff9—11)), and then discuss the generalization of V1€ Gaussian noise with amplitudge=0.01 (lower panels Ab-
scissa, time in arbitrary units, ordinates, unit numtsmension-
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the results. ) > :
. . lesg. Model equations are the same as in R8f.with parameters:
err1|2dpt())3|/ar coordinates, the dynamics of the RIC are gOV'a=0.139,b=2.54,c=0.008, stimulation period= 29, and ampli-

tude A=0.27. Numerical simulation was done using the Euler

method with a step of 0.01. The initial conditions of the two vari-
) ablesv andw of the ten units were =kx0.01 fork=0, ...,9 and
r=kr(l1-r), (D) w=0.
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Thus, definingF(a,277)=f(a)+ 277 modulo 2, the re- 6 6 6 o
sponse of the RIC to a pacemaker pulse train with pericd 0,4/\:: whbi Tl S
captured by[9] i B ¥y BB R
2 2
®*n+1= F( an'ZWT)' (4) % 2 haset 6 % phase® 6 O 2 phasé® 6
References to analyses of Hg) and variants are given in 6 6 . 6
Refs.[9,10]. p i ey
We model the effect of external noise on an ensemble of £ i | Yo |
RICs by adding(t), white Gaussian noise of intensidy, to 2 2 2
Eq.(2). Thus, the phasa' of theith unit within an ensemble A SEVURSRU U [ VU B
of RICs satisfies phase phase phase
. FIG. 2. First, fifty first, and hundred first iterates of the phase
a'=2m+&(1). (5 transition functionfrom left to right without (upper row and with

noise(lower row). Abscissa and ordinate in all panels represent the

We modify Eq.(4) to take the noise into account. More pre- phase in radians. Model parameters=0.602, A=1.02, and
cisely, given a phase,, at the time of thenth pulse delivery, ¢=0 and 0.1(upper and lower rows
the system is almost instantaneously shifted to the phase

f(«,). From this point, it moves along the circle according p=+o
to Eq. (5) for a time 7, when the next pulse is applied. Thus, K(B,a)= 2, g[B+2pmf(a)], (7)
p=—=

the phase at the time of then{1)th stimulus satisfies

ani1=f(ap) +277+,, wherel, are independent identi- . , ..
cally distributed centered Gaussian random variables witl{/nere the summation takes into account the possibility of

standard deviatiow /7. We can rewrite this relation for the r.““'“P'e rotg_tions arc_Jund the; unit circl_e, algds_ the transi-
ith unit within the ensemble as tion probability density function associated with E§):

al o =F(a\2mr+,). (6) _ 1 B 1 (u—x—27t)?
! g(u,t[x) ﬁaexp[ | ®

Synchrony within the ensemble is ensured when the differ-
ences between;,, for different values of, tend to zero as If the phasea, prior to the first pulse has a density(«a),
n—oo, the phase distributioh,, prior to the fi+1)th pulse is de-

In some systems, the application of a fluctuating input cartermined by iterating the Markov operatBrwith stochastic
induce interunit synchrony12,13. In phase models, this kernelK:
situation occurs when the movement along the unit circle is ,
nonuniform[14]. Here, we analyze a situation less favorable N
for synchrony, because in the RIC, noise alone, without pe- Ph(B)= JO K(B a)h(a)da. ©)
riodic pulses, cannot produce such an effect. Indeed, direct
examination of Eq(5) shows that starting from two RICs Given thatK is strictly positive, the Markov operatd? is
with initial phasesa’(0) and «*(0), the corresponding ergodic[15]. Therefore, even for small noise intensities
phase differenceAa(t)=a'(t)—a*(t)=Aa(0) remains and in regimes where the deterministic RIC may display
constant throughout time so that the discharge times of theultistability, the operatoP has a unique invariant probabil-
units do not synchronize. ity density functionh*, and iterates of all initial densities

It is the combination of noise and periodic stimulation eventually converge to {t15,16. This results from the fact
that ensures synchrony. Figure 2 illustrates this point. Takinghat for Gaussian noise, regardless of how small the intensity
an ensemble oN RICs with initial phasesay=2i7/N, can be, the support of the densiyis unbounded. For other
i=1---N, the figure representsy; (right panels, as;  forms of perturbations leading to densities with bounded
(middle panels and o}y, (left panel$ againstay, for en-  support,P may not be ergodi¢tsee examples in Ref17] and
sembles withoutupper row and with noise(lower row), in ~ p. 322 of Ref[15]).
a regime where the noise-free periodically forced RIC dis- The Markov approach depicts the “one point motion” of
plays chaos. The lower row shows that, in contrast withthe system. To analyze synchronization within the ensemble,
noise-free RICs, those receiving external noise fully synwe consider the fi point motion,” that is the joint dynamics
chronize with one another, as the phases of the units take @ several RICs to the same input consisting of pacemaker
the same value. The following paragraphs are devoted to theulse  train  and noise. ~We denote byw

analysis of this phenomenon. We examine, successively, the{ ... .{-n, ... .{-1,{0:{1s -+ +Ln, - . .} ONE specific se-
response of a single RIC, and ensembles of such units tguence of{;. The question we need to address is whether
both noise and periodic forcing. sequencesy, (w) and a(w) of the stimuli phases of two

For a single unit, the probability to reach a phgsat the  units within the ensemble, initiated at different phases, and
time of a pulse delivery provided that it was at a phase receiving the same external noieeand pacemaker stimula-
prior to the previous pulsatile perturbation is tion, tend to one another as—~. To examine this, we
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evaluate the local stability of a sequenegw) through the
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computation of the Lyapunov exponent: E,
8
10 |dF s 1L
)\(ao,w):r!ijlﬁ pgo In| 5o (@) (10) g :;
& 5 1
ey
where the arguments af indicate thata priori, this quantity 0 §
depends on both the initial phasg and the specific noise 06 'geriod
realizationw. Traditionally, the sign of the leading Lyapunov Amplitude' -2
exponent is an indicator of sensitive dependence on initial
conditions(or lack of thereof in deterministic systems. This
work presents a different interpretation for it: we show that a =
negative Lyapunov exponent is the indicator of synchrony 2
within the ensemble, because in ergodic random dynamical §
systems, negative Lyapunov exponents imply that trajecto- N
ries cluster at at finite number of stochastic equilijg]. §
This is explained in the following. §
Ergodicity ensures that depends on neithety nor w -
and can be evaluated BE3] o.geriod
2m dF 2m df
)\=f0 h* (a)ln @(a) da=f0 h* (a)In a(a) da.
(11 =
2
In other words, the Lyapunov exponent for all units within §
the ensemble, regardless of their initial state, and for almost o O}
all external noise sample patlag takes on the same value %'0'6
given by Eq.(11). Consequentlyh <0 means, not only that §'1‘2 1
a specific phase sequenag of a single unit within the en- =
semble is locally stable, but also, more generally, that this is 06 0-§,eriod
the case for all units. In other words <0 implies that se- Amplitude! -2
quencesa,, are mutually attracted one to another, and, in 1870
fact, that they eventually cluster at a finite numbrerof FIG. 3. Lyapunov exponent of the noisy RIC with pacemaker
sequences, denoted byi(w), ..., ¥h(w) [19]. Further-  pulsatile forcing, against stimulation period and amplitude dor

more, whem\ <0, we havem=1 for Eq.(6). This is a con- =0.05 (top), 1 (middle), and 5 (bottom. Abscissa, ordinate, and
sequence of the fact that starting from arbitrary initial phasesertical axes are in arbitrary units.

a} and a3, it is possible to find a sequenae such that for

somen>0, ap(w) and aj(w) become arbitrarily close to response is chaotic, for small noige>0, but X becomes
one anothef20]. Heuristically, this means that eagh at-  negative when noise is increased.
tracts all neighboring sequences, and the previous condition |n summary, the main influence of noise is to make the
ensures that, at some point, comes arbitrarily close to any Lyapunov exponent negative. Two separate mechanisms ac-
other sequence, and therefore attracts it, so that eventualtypunt for this. One holds for invertible circle maps in gen-

sequences merge into a single one.

eral, at all noise levels, and the other for the noise induced

The consequence of the above arguments for synchronstabilization of chaotic regimes whédris noninvertible. We

zation within the ensemble is that<0 ensures that for al- describe these successively.
In a givenw={{,}, even with lows, one almost surely

most any external noise sample paththere exists a unique

sequencey,(w) which attracts thm‘n(w). In other words, encounters subsequences of arbitrary length in whigh 2
when\ <0, units within the ensemble synchronize one with+ £, are close to one. In fact, such subsequences occur re-
another, and we need only evaluateto determine the re- currently, and at arbitrarily large times. Whéris invertible,

gimes of synchrony.

passage through such a subsequence leads rapidly to a re-

Systematic numerical evaluations pfrevealed the fol- gime of 1:1 alternation independently from initial phases
lowing (see illustrations in Fig. )3 (i) Whenf (and conse- [11]. This phenomenon is responsible for the contraction that
quentlyF) is invertible(so that the noise-free RIC can either wipes out dependence on initial conditions wHes invert-
phase lock or display quasiperiodic respons&s<0, even ible. This phenomenon bears consequences for both phase
for small noise (ii) Similar results were found wheis not  locking and quasiperiodic regimes. For instance, in a noise-
invertible, and the noise-free system stabilizes in a periodifree 1:q phase lockingone rotation of the RIC peq input
response(iii) When f is not invertible and the noise-free cycles with q=2, units within an ensemble can cluster into
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g synchronous groups, with groups being®q-shifted (@  tems[1]. Furthermore, besides oscillators, the response of
=1,2,...,9—1) one with respect to another. With the ad- other classes of systems, notably excitable ones, can also be
dition of noise, even of low intensity, aj clusters eventually captured by iterates of mapa2]. Thus, our approach is not
merge into a single one. limited to pacemakers or oscillators, but holds for a wider
One consequence of the above analysis is that thelass of systems. Figure 1, which showed the stabilizing ef-
asymptotic (random dynamics of the periodically forced fect of noise on the chaotic response of an excitable FHN to
noisy RIC sharply differ from those of the deterministic case periodic pulse train, confirms this point.
Namely, the latter can display multistability due to the coex-  \we have argued that when the map approximating the
istence of stable fixed points or stable periodic orbits. HOWyesponse of the units is an invertible circle map, even small
ever, this situation is not possible in the corresponding ranpise can synchronize the ensemble, and that this result is

dpm dynamical system, where .almost all orbits clluster. @nto Ei“ndependent from the particular shape of the map. When the
single one. In this sense, noise destroys multistability. A}nap is not invertible, whether synchronization takes place or

similar phenomenon occurs in scalar bistable systems per- . . :
turbed by additive noisg21]. not depends on whether the contracting regions in the map

While the above mechanism holds for arbitrary invertibledom'.nate' Remarkably, this is the case not only in the .RIC
circle mapsf, and is not a special property of the Systemand |t_s variantge.g., Ref[11]), but is actually observed in
considered here, the stabilizing effect of large noise wiign €XPerimental records of pacemaker cedsy., Ref[10]), and

noninvertible depends on the particular geometrical proper@PPears also in the maps approximating the response of ex-
ties of this map. More preciselyy* flattens at larger be- ~ Citable system$22]. _
cause there are no preferential phases in this regime. Conse- /N conclusion, the present work shows that external noise
quently,\ tends to the average of|ff| [Eq. (11)], which is ~ ¢an synchronize an ensemble of periodically stimulated units
negative for models such as the RIC. This itself is due to théuch as oscillators or excitable systems, and that this phe-
fact thatf, even for parameter ranges where pacemakefRomenon is independent from phase synchrony to the input.
stimulation evokes chaotic responses, presents long stretch&bis constitutes an alternative effect of noise in the sense that
with slopes lower than 1. (i) it does not concern synchrony with respect to the periodic
The above considerations provide the setup for discussinmput, but instead interunit synchronizatiofii) it results
the generality of the results. In our approach, we describeffom external rather than internal noise applied to the units,
the behavior of the forced system through the iterates ofepresenting situations where, for instance, the noise is de-
phase transition maps. This is well-documented in forcedivered through an external biomedical device, diid un-
biological oscillators such as neurons and heart cell aggrdike phenomena such as stochastic resonance, is not confined
gates, and it also applies to a wide variety of physical systo a specific bounded range of noise intensities.
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