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External noise synchronizes forced oscillators
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Periodic pulsatile perturbation of nonlinear oscillators generates phase-locking, quasiperiodic, and chaotic
responses. This work shows that the application of external noise to ensembles of such forced systems can
synchronize oscillations, even in regimes where neither the noise nor the periodic forcing, when applied alone,
would lead to such a phenomenon.
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Periodic stimulation can entrain nonlinear systems suc
neurons and heart cells into phase locked, quasiperiodic,
chaotic discharge patterns@1#. In systems such as senso
neurons, these patterns are altered by noise@2,3#. Such per-
turbations can have opposite effects on input-output ph
synchronization depending on signal and system charact
tics. For instance, noise induced phase skips can red
phase synchronization between the driving periodic in
and an oscillator’s response@4#, or on the contrary, noise
induced stochastic phase locking can regularize the resp
when the entry signal alone is too weak to entrain an ex
able system@5#.

In systems where information processing and transm
sion relies on arrays of units operating in parallel, besi
phase synchrony to input, another issue of importance is
of synchronization between the components of the ensem
@6#. The present work addresses this topic. We show that
addition of external noise to a periodic stimulation affecti
all units within the ensemble can synchronize the units w
one another. Such interunit synchronization takes place e
without phase synchrony to the input. Figure 1 illustrates t
phenomenon in an ensemble of periodically forc
FitzHugh-Nagumo model~FHN! @7# without ~upper panels!
and with noise~lower panels!. The former evokes a chaoti
firing with sensitive dependence on initial conditions bei
responsible for driving the units out of synchrony@8#. This
situation is drastically changed when the same external n
is applied to all units. After a transient time, the units d
charge synchronously, despite the fact that the firing rem
irregular. This stabilizing effect of noise is also confirm
through the computation of the leading Lyapunov expon
of the system, which is positive in the absence of noise,
progressively becomes negative when the noise intensi
increased~not shown!.

In the following, we first present an analysis of this ph
nomenon in an oscillator, namely, the radial isochronic clo
~RIC!, also referred to as Poincare´ oscillator, which is one of
the canonical models of oscillating biological systems~see
references in@9–11#!, and then discuss the generalization
the results.

In polar coordinates, the dynamics of the RIC are go
erned by

ṙ 5kr~12r !, ~1!
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ȧ52p, ~2!

wherek is a positive constant. The unit circle~i.e., r 51) is a
stable limit cycle of Eqs.~1! and~2! that attracts trajectories
of all initial points except the origin. Pulses of amplitudeA
result in a horizontal translation from a pointX in the plane
to X85X1(A,0).

We assume thatk@0, so that, essentially, the dynamic
take place on the unit circle. In this way, a pulsatile pert
bation produces a phase shift froma to b5 f (a), wheref is
the phase transition function:

f ~a!5arccosF A1cos~a!

AA212A cos~a!11
G if sin a>0

52p2arccosF A1cos~a!

AA212A cos~a!11
G if sin a,0.

~3!

FIG. 1. Left panels: time~in arbitrary units! against superim-
posed membrane potentials~in arbitrary units! of ten FHN units.
Right panels: each line represents the discharge times of one o
ten units ~raster plot!, without noise~upper panels!, and with a
white Gaussian noise with amplitudes50.01 ~lower panels!. Ab-
scissa, time in arbitrary units, ordinates, unit number~dimension-
less!. Model equations are the same as in Ref.@8# with parameters:
a50.139,b52.54,c50.008, stimulation periodt529, and ampli-
tude A50.27. Numerical simulation was done using the Eu
method with a step of 0.01. The initial conditions of the two va
ablesv andw of the ten units werev5k30.01 fork50, . . . ,9 and
w50.
©2001 The American Physical Society01-1
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Thus, definingF(a,2pt)5 f (a)12pt modulo 2p, the re-
sponse of the RIC to a pacemaker pulse train with periodt is
captured by@9#

an115F~an,2pt!. ~4!

References to analyses of Eq.~4! and variants are given in
Refs.@9,10#.

We model the effect of external noise on an ensemble
RICs by addingj(t), white Gaussian noise of intensitys, to
Eq. ~2!. Thus, the phasea i of the i th unit within an ensemble
of RICs satisfies

ȧ i52p1j~ t !. ~5!

We modify Eq.~4! to take the noise into account. More pr
cisely, given a phasean at the time of thenth pulse delivery,
the system is almost instantaneously shifted to the ph
f (an). From this point, it moves along the circle accordi
to Eq.~5! for a timet, when the next pulse is applied. Thu
the phase at the time of the (n11)th stimulus satisfies
an115 f (an)12pt1zn , wherezn are independent identi
cally distributed centered Gaussian random variables w
standard deviationsAt. We can rewrite this relation for the
i th unit within the ensemble as

an11
i 5F~an

i ,2pt1zn!. ~6!

Synchrony within the ensemble is ensured when the dif
ences betweenan

i , for different values ofi, tend to zero as
n→`.

In some systems, the application of a fluctuating input c
induce interunit synchrony@12,13#. In phase models, this
situation occurs when the movement along the unit circle
nonuniform@14#. Here, we analyze a situation less favorab
for synchrony, because in the RIC, noise alone, without
riodic pulses, cannot produce such an effect. Indeed, di
examination of Eq.~5! shows that starting from two RIC
with initial phasesa1(0) and a2(0), the corresponding
phase differenceDa(t)5a1(t)2a2(t)5Da(0) remains
constant throughout time so that the discharge times of
units do not synchronize.

It is the combination of noise and periodic stimulatio
that ensures synchrony. Figure 2 illustrates this point. Tak
an ensemble ofN RICs with initial phasesa0

i 52ip/N,
i 51•••N, the figure representsa1

i ~right panels!, a51
i

~middle panels!, and a101
i ~left panels! againsta0

i , for en-
sembles without~upper row! and with noise~lower row!, in
a regime where the noise-free periodically forced RIC d
plays chaos. The lower row shows that, in contrast w
noise-free RICs, those receiving external noise fully s
chronize with one another, as the phases of the units tak
the same value. The following paragraphs are devoted to
analysis of this phenomenon. We examine, successively
response of a single RIC, and ensembles of such unit
both noise and periodic forcing.

For a single unit, the probability to reach a phaseb at the
time of a pulse delivery provided that it was at a phasea
prior to the previous pulsatile perturbation is
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K~b,a!5 (
p52`

p51`

g@b12pp,tu f ~a!#, ~7!

where the summation takes into account the possibility
multiple rotations around the unit circle, andg is the transi-
tion probability density function associated with Eq.~5!:

g~u,tux!5
1

A2pts
expF2

1

2

~u2x22pt !2

s2t
G . ~8!

If the phasea0 prior to the first pulse has a densityh0(a),
the phase distributionhn prior to the (n11)th pulse is de-
termined by iterating the Markov operatorP with stochastic
kernelK:

Ph~b!5E
0

2p

K~b,a!h~a!da. ~9!

Given thatK is strictly positive, the Markov operatorP is
ergodic @15#. Therefore, even for small noise intensitiess
and in regimes where the deterministic RIC may disp
multistability, the operatorP has a unique invariant probabi
ity density functionh* , and iterates of all initial densities
eventually converge to it@15,16#. This results from the fact
that for Gaussian noise, regardless of how small the inten
can be, the support of the densityg is unbounded. For othe
forms of perturbations leading to densities with bound
support,P may not be ergodic~see examples in Ref.@17# and
p. 322 of Ref.@15#!.

The Markov approach depicts the ‘‘one point motion’’ o
the system. To analyze synchronization within the ensem
we consider the ‘‘n point motion,’’ that is the joint dynamics
of several RICs to the same input consisting of pacema
pulse train and noise. We denote byv
5$ . . . ,z2n , . . . ,z21 ,z0 ,z1 , . . . ,zn , . . . % one specific se-
quence ofz i . The question we need to address is whet
sequencesan

i (v) and an
j (v) of the stimuli phases of two

units within the ensemble, initiated at different phases, a
receiving the same external noisev and pacemaker stimula
tion, tend to one another asn→`. To examine this, we

FIG. 2. First, fifty first, and hundred first iterates of the pha
transition function~from left to right! without ~upper row! and with
noise~lower row!. Abscissa and ordinate in all panels represent
phase in radians. Model parameters:t50.602, A51.02, and
s50 and 0.1~upper and lower rows!
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evaluate the local stability of a sequencean(v) through the
computation of the Lyapunov exponent:

l~a0 ,v!5 lim
n→`

1

n (
p50

n

lnUdF

da
~ap!U, ~10!

where the arguments ofl indicate thata priori, this quantity
depends on both the initial phasea0 and the specific noise
realizationv. Traditionally, the sign of the leading Lyapuno
exponent is an indicator of sensitive dependence on in
conditions~or lack of thereof! in deterministic systems. Thi
work presents a different interpretation for it: we show tha
negative Lyapunov exponent is the indicator of synchro
within the ensemble, because in ergodic random dynam
systems, negative Lyapunov exponents imply that traje
ries cluster at at finite number of stochastic equilibria@19#.
This is explained in the following.

Ergodicity ensures thatl depends on neithera0 nor v
and can be evaluated as@18#

l5E
0

2p

h* ~a!lnUdF

da
~a!Uda5E

0

2p

h* ~a!lnU d f

da
~a!Uda.

~11!

In other words, the Lyapunov exponent for all units with
the ensemble, regardless of their initial state, and for alm
all external noise sample pathsv, takes on the same valu
given by Eq.~11!. Consequently,l,0 means, not only tha
a specific phase sequencean

i of a single unit within the en-
semble is locally stable, but also, more generally, that thi
the case for all units. In other words,l,0 implies that se-
quencesan

i are mutually attracted one to another, and,
fact, that they eventually cluster at a finite numberm of
sequences, denoted bygn

1(v), . . . , gn
m(v) @19#. Further-

more, whenl,0, we havem51 for Eq. ~6!. This is a con-
sequence of the fact that starting from arbitrary initial pha
a0

1 anda0
2, it is possible to find a sequencev such that for

somen.0, an
1(v) and an

2(v) become arbitrarily close to
one another@20#. Heuristically, this means that eachg i at-
tracts all neighboring sequences, and the previous cond
ensures that, at some point,g i comes arbitrarily close to an
other sequence, and therefore attracts it, so that event
sequences merge into a single one.

The consequence of the above arguments for synchr
zation within the ensemble is thatl,0 ensures that for al
most any external noise sample pathv, there exists a unique
sequencegn(v) which attracts thean

i (v). In other words,
whenl,0, units within the ensemble synchronize one w
another, and we need only evaluatel to determine the re-
gimes of synchrony.

Systematic numerical evaluations ofl revealed the fol-
lowing ~see illustrations in Fig. 3!: ~i! When f ~and conse-
quentlyF) is invertible~so that the noise-free RIC can eith
phase lock or display quasiperiodic responses!, l,0, even
for small noise.~ii ! Similar results were found whenf is not
invertible, and the noise-free system stabilizes in a perio
response.~iii ! When f is not invertible and the noise-fre
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response is chaotic, for small noisel.0, but l becomes
negative when noise is increased.

In summary, the main influence of noise is to make t
Lyapunov exponent negative. Two separate mechanisms
count for this. One holds for invertible circle maps in ge
eral, at all noise levels, and the other for the noise indu
stabilization of chaotic regimes whenf is noninvertible. We
describe these successively.

In a givenv5$zn%, even with lows, one almost surely
encounters subsequences of arbitrary length in which 2pt
1zn are close to one. In fact, such subsequences occu
currently, and at arbitrarily large times. Whenf is invertible,
passage through such a subsequence leads rapidly to
gime of 1:1 alternation independently from initial phas
@11#. This phenomenon is responsible for the contraction t
wipes out dependence on initial conditions whenf is invert-
ible. This phenomenon bears consequences for both p
locking and quasiperiodic regimes. For instance, in a no
free 1:q phase locking~one rotation of the RIC perq input
cycles! with q>2, units within an ensemble can cluster in

FIG. 3. Lyapunov exponent of the noisy RIC with pacemak
pulsatile forcing, against stimulation period and amplitude fors
50.05 ~top!, 1 ~middle!, and 5 ~bottom!. Abscissa, ordinate, and
vertical axes are in arbitrary units.
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q synchronous groups, with groups being 2pp/q-shifted (p
51,2, . . . , q21) one with respect to another. With the a
dition of noise, even of low intensity, allq clusters eventually
merge into a single one.

One consequence of the above analysis is that
asymptotic ~random! dynamics of the periodically forced
noisy RIC sharply differ from those of the deterministic ca
Namely, the latter can display multistability due to the coe
istence of stable fixed points or stable periodic orbits. Ho
ever, this situation is not possible in the corresponding r
dom dynamical system, where almost all orbits cluster int
single one. In this sense, noise destroys multistability
similar phenomenon occurs in scalar bistable systems
turbed by additive noise@21#.

While the above mechanism holds for arbitrary invertib
circle mapsf, and is not a special property of the syste
considered here, the stabilizing effect of large noise whenf is
noninvertible depends on the particular geometrical prop
ties of this map. More precisely,h* flattens at larges be-
cause there are no preferential phases in this regime. Co
quently,l tends to the average of lnuf8u @Eq. ~11!#, which is
negative for models such as the RIC. This itself is due to
fact that f, even for parameter ranges where pacema
stimulation evokes chaotic responses, presents long stre
with slopes lower than 1.

The above considerations provide the setup for discus
the generality of the results. In our approach, we descri
the behavior of the forced system through the iterates
phase transition maps. This is well-documented in forc
biological oscillators such as neurons and heart cell ag
gates, and it also applies to a wide variety of physical s
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tems @1#. Furthermore, besides oscillators, the response
other classes of systems, notably excitable ones, can als
captured by iterates of maps@22#. Thus, our approach is no
limited to pacemakers or oscillators, but holds for a wid
class of systems. Figure 1, which showed the stabilizing
fect of noise on the chaotic response of an excitable FHN
periodic pulse train, confirms this point.

We have argued that when the map approximating
response of the units is an invertible circle map, even sm
noise can synchronize the ensemble, and that this resu
independent from the particular shape of the map. When
map is not invertible, whether synchronization takes place
not depends on whether the contracting regions in the m
dominate. Remarkably, this is the case not only in the R
and its variants~e.g., Ref.@11#!, but is actually observed in
experimental records of pacemaker cells~e.g., Ref.@10#!, and
appears also in the maps approximating the response o
citable systems@22#.

In conclusion, the present work shows that external no
can synchronize an ensemble of periodically stimulated u
such as oscillators or excitable systems, and that this p
nomenon is independent from phase synchrony to the in
This constitutes an alternative effect of noise in the sense
~i! it does not concern synchrony with respect to the perio
input, but instead interunit synchronization,~ii ! it results
from external rather than internal noise applied to the un
representing situations where, for instance, the noise is
livered through an external biomedical device, and~iii ! un-
like phenomena such as stochastic resonance, is not con
to a specific bounded range of noise intensities.
ys-

rks

:

d S.

or.

. E
.

n,
@1# L. Glass, Nature~London! 410, 277 ~2001!.
@2# H.A. Braun, H. Wissing, K. Scha¨fer, and M. Hirsch, Nature

~London! 367, 270 ~1994!.
@3# A. Neiman, X. Pei, D. Russell, W. Wojtenek, L. Wilkens,

Moss, H.A. Braun, M.T. Huber, and K. Voigt, Phys. Rev. Le
82, 660 ~1999!.

@4# R.L. Stratanovich,Topics in the Theory of Random Noise~Gor-
don and Breach, New York, 1967!, Vol. 2.

@5# T. Shimokawa, K. Pakdaman, and S. Sato, Phys. Rev. E60,
R33 ~1999!; A. Longtin, Chaos, Solitons Fractals11, 1835
~2000!.

@6# X. Pei, L. Wilkens, and F. Moss, Phys. Rev. Lett.77, 4679
~1996!; T. Shimokawa, A. Rogel, K. Pakdaman, and S. Sa
Phys. Rev. E59, 3461 ~1999!; S. Tanabe, S. Sato, and K
Pakdaman,ibid. 60, 7235~1999!; S. Tanabe and K. Pakdama
Biol. Cybern. ~to be published!; M. Diesmann, M.-O. Ge-
waltig, and A. Aertsen, Nature~London! 402, 529 ~1999!.

@7# R.A. FitzHugh, Biophys. J.1, 445 ~1961!; J. Nagumo, S.
Arimoto, and S. Yoshizawa, Proc. IRE50, 2061~1962!.

@8# D.T. Kaplan, J.R. Clay, T. Manning, L. Glass, M.R. Gueva
and A. Shrier, Phys. Rev. Lett.76, 4074~1996!.

@9# L. Glass, and J. Sun, Phys. Rev. E50, 5077~1994!.
@10# M. Stiber, K. Pakdaman, J.-F. Vibert, E. Boussard, J.P. S

undo, T. Nomura, S. Sato, and S. Doi, BioSystems40, 177
~1997!.
,

,

-

@11# T. Yamanobe, K. Pakdaman, T. Nomura, and S. Sato, BioS
tems48, 287 ~1998!.

@12# T.L.L. Closson and M.R. Roussel, Phys. Rev. Lett.85, 3974
~2000!.

@13# K. Pakdaman, S. Tanabe, and T. Shimokawa, Neural Netwo
~to be published!.

@14# K. Pakdaman, Neural Comput.~to be published!.
@15# A. Lasota, and M. C. Mackey,Chaos, Fractals, and Noise

Stochastic Aspects of Dynamics, 2nd ed. ~Springer, Berlin,
1994!.

@16# T. Shimokawa, K. Pakdaman, T. Takahata, S. Tanabe, an
Sato, Biol. Cybern.83, 313 ~2000!.

@17# L. Glass, C. Graves, G.A. Petrillo, and M.C. Mackey, J. The
Biol. 86, 455 ~1980!.

@18# L. Arnold, Random Dynamical Systems~Springer-Verlag, Ber-
lin, 1998!.

@19# Y. Le Jan, Ann. Inst. Henri Poincare´–Probabilitéet Statis-
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